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Uncertainty

Probability of facts and of theories

Probability of facts and of theories

Decisions’consequences depend on external factors
(contingencies)

Probability of contingencies

Probabilistic theories on contingencies (e.g., generative
mechanisms, DGP)

Thinking over such theories

Two layers of uncertainty
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Decision problems: the toolbox, I

Decision problems: the toolbox, I

A decision problem consists of

a space A of actions

a space C of material (e.g., monetary) consequences

a space S of environment states

a consequence function ρ : A× S → C that details the
consequence

c = ρ (a, s)

of action a when state s obtains

We abstract from state misspecification issues (e.g.,
unforeseen contingencies)
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Example (i): natural hazards

Example (i): natural hazards

Public offi cials have to decide whether or not to evacuate an area
because of a possible earthquake

A two actions a0 (no evacuation) and a1 (evacuation)

C monetary consequences (damages to infrastructures and
human casualties; Mercalli-type scale)

S possible peak ground accelerations (Richter-type scale)

c = ρ (a, s) the monetary consequence of action a when
state s obtains
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Example (ii): monetary policy

Example (ii): monetary policy example

ECB or the FED have to decide some target level of inflation to
control the economy unemployment and inflation

Unemployment u and inflation π outcomes are connected to
shocks ε = (εu , επ) and the policy a according to

u = θ0 + θ1ππ + θ1aa+ εu

π = a+ επ

θ = (θ0, θ1π, θ1a) are three structural coeffi cients

θ1π and θ1a are slope responses of unemployment to actual
and planned inflation (e.g., Lucas-Sargent θ1a = −θ1π;
Samuelson-Solow θ1a = 0)
θ0 is the rate of unemployment that would (systematically)
prevail without policy interventions
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Example (ii): monetary policy

Example (ii): monetary policy

Here:
A the target levels of inflation
C the pairs c = (u,π)
S has structural and random components

s = (ε, θ)

The reduced form is

u = θ0 + (θ1π + θ1a) a+ θ1πε+ εu

π = a+ επ

and so ρ has the form

ρ (a,w , ε, θ) =
[

θ0
0

]
+ a

[
θ1π + θ1a

1

]
+

[
1 θ1π

0 1

] [
εu
επ

]
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Example (iii): climate policy

Example (iii): climate policy

A policy maker has to decide some target greenhouse gas
emissions level to control damages associated with global
temperatures increases.

Different sources of uncertainty are relevant (cf. Heal and
Millner 2014)
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Example (iii): climate policy

Example (iii): climate policy

Scientific uncertainty: how do emissions E translate in
increases of temperatures T? Assume

T = θTE + εT

where θT is a structural CCR (carbon-climate response)
parameter and εT is a random component (cf. Matthews et
al. 2009)
Socioeconomic uncertainty: how do increases of temperatures
T translate in economic damages D? Assume a DICE
quadratic

D = θ1DT + θ2DT
2 + εD

where θ1D and θ2D are structural parameters and εD is a
random component
We abstract from issues about the objective functions
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Example (iii): climate policy

Example (iii): climate policy

Random components: shocks (i.e., minor omitted explanatory
variables which we are “unable and unwilling to specify”) or
measurement errors

Cf. the works of Hurwicz, Koopmans and Marschak in the
1940s and 1950s
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Example (iii): climate policy

Example (iii): climate policy

Here:
A emission policies
C the economic damages (in GDP terms)
S has structural and random components

s = (ε, θ)

where
ε = (εT , εD )

are the random components affecting the climate and economic
systems, and

θ = (θT , θ1D , θ2D )

are their structural coeffi cients
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Example (iii): climate policy

Example (iii): climate policy

Action a is an emission policy, with cost c (a)

d (a, ε, θ) economic damage function

ρ (a, ε, θ) = −d (a, ε, θ)− c (a) is the overall consequence of
policy a

From  T = θT a+ εT

D = θ1DT + θ2DT 2 + εD

it follows that

d (a, ε, θ) = − (θ1D θT + 2θ2D εT ) a− θ2D θ2T a
2 − θ1D εT

−θ2D ε2T − εD
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Decision problems: the toolbox, II

Decision problems: the toolbox, II

The quartet (A, S ,C , ρ) is a decision form under uncertainty

The decision maker (DM) has a preference % over actions

we write a % b if the DM (weakly) prefers action a to action b

The quintet (A, S ,C , ρ,%) is a decision problem under
uncertainty

DMs aim to select actions â ∈ A such that â % a for all a ∈ A
Static setting, we abstract from temporal/dynamic issues (cf.
Gollier 2013)
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Consequentialism

Consequentialism

What matters about actions is not their label / name but the
consequences that they determine when the different states obtain

Consequentialism: two actions that are realization equivalent
— i.e., that generate the same consequence in every state —are
indifferent

Formally,

ρ (a, s) = ρ (b, s) ∀s ∈ S =⇒ a ∼ b

or, equivalently,
ρa = ρb =⇒ a ∼ b

Here ρa : S → C is the section of ρ at a given by
ρa (s) = ρ (a, s)

The section ρa is a (Savage) act



Uncertainty

Probability models

Probability models

Because of their ex-ante structural information, DMs know
that states are generated by a probability model m that
belongs to a given subset M of ∆ (S)
Each m describes a possible DGP, so it represents physical
uncertainty (risk)

DMs thus posit a model space M in addition to the state
space S , a central tenet of classical statistics a la
Neyman-Pearson-Wald

When the model space is based on experts’advice, its
nonsingleton nature may reflect different advice
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Models: a toy example

Models: a toy example

Consider an urn with 90 Red, or Green, or Yellow balls

DMs bet on the color of a ball drawn from the urn

State space is S = {R,G ,Y }
Without any further information, M = ∆ ({R,G ,Y })
If DMs are told that 30 balls are red, then

M = {m ∈ ∆ ({R,G ,Y }) : m (R) = 1/3}
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Models and experts: probability of heart attack

Models and experts: probability of heart attack

Two DMs: John and Lisa are 70 years old

smoke

no blood pressure problem

total cholesterol level 310 mg/dL

HDL-C (good cholesterol) 45 mg/dL

systolic blood pressure 130

What’s the probability of a heart attack in the next 10 years?
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Models and experts: probability of heart attack

Models and experts: probability of heart attack

Based on their data and medical models, experts say

Experts John’s m Lisa’s m
Mayo Clinic 25% 11%

National Cholesterol Education Program 27% 21%

American Heart Association 25% 11%

Medical College of Wisconsin 53% 27%

University of Maryland Heart Center 50% 27%

Table from Gilboa and Marinacci (2013)
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Uncertainty: a taxonomy

Uncertainty: a taxonomy

In this setup, we can decompose uncertainty in three distinct layers
(cf. Hansen and Marinacci 2016):

Physical or aleatory uncertainty (risk): uncertainty within a
model m

Model ambiguity or uncertainty: uncertainty across models in
M

Model misspecification: the true model does not belong to the
posited set M
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Models: a consistency condition

Models: a consistency condition

Cerreia, Maccheroni, Marinacci, Montrucchio (PNAS 2013)
take the “physical” information M as a primitive and thus
enrich the standard framework

DMs know that the true model m that generates observations
belongs to the posited collection M

In terms of preferences: betting behavior must be consistent
with datum M, i.e.,

m (F ) ≥ m (E ) ∀m ∈ M =⇒ “bet on F”% “bet on E”

The sextet (A,S ,C ,M, ρ,%) forms a classical decision
problem under uncertainty

We abstract from model misspecification issues
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Classical subjective EU

We show that a preference % that satisfies Savage’s axioms and
the consistency condition is represented by the criterion

V (a) = ∑
m∈M

(
∑
s∈S

u (ρ (a, s))m (s)

)
µ (m) (1)

That is, acts a and b are ranked as follows:

a % b ⇐⇒ V (a) ≥ V (b)
Here

u is a von Neumann-Morgenstern utility function that captures
risk attitudes (i.e., attitudes toward physical uncertainty)
µ is a subjective prior probability that quantifies the epistemic
uncertainty about models; its support is included in M
If M is based on the advice of different experts, the prior may
reflect the different confidence that DMs have in each of them
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Classical subjective EU

Classical subjective EU

We call this representation Classical Subjective Expected Utility
because of the classical statistics tenet on which it relies

If we set
R (a,m) = ∑

s∈S
u (ρ (a, s))m (s)

we can write the criterion as

V (a) = ∑
m∈M

R (a,m) µ (m)

In words, the criterion considers the expected utility R (a,m)
of each possible model m, and averages them out according to
the prior µ
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Classical subjective EU

Classical subjective EU

Each prior µ induces a predictive probability µ̄ ∈ ∆ (S)
through reduction

µ̄ (E ) = ∑
m∈M

m (E ) µ (m)

In turn, the predictive probability enables to rewrite the
representation as

V (a) = R (a, µ̄) = ∑
s∈S

u (ρ (a, s)) µ̄ (s)

This reduced form of V is the original Savage subjective EU
representation
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Classical subjective EU: some special cases

Classical subjective EU: some special cases

If the support of µ is a singleton {m}, DMs subjectively (and
so possibly wrongly) believe that m is the true model
The criterion thus reduces to a Savage EU criterion R (a,m)

If M is a singleton {m}, DMs know that m is the true model
(a rational expectations tenet)

(i) There is no epistemic uncertainty, but only physical uncertainty
(quantified by m)

(ii) The criterion again reduces to the EU representation R (a,m),
but now interpreted as a von Neumann-Morgenstern criterion
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Classical subjective EU: some special cases

Classical subjective EU: some special cases

Classical subjective EU thus encompasses both the Savage
and the von Neumann-Morgenstern representations

If M ⊆ {δs : s ∈ S}, there is no physical uncertainty, but only
epistemic uncertainty (quantified by µ). By identifying s with
δs , wlog we can write µ (s) and so the criterion takes the form

V (a) = ∑ u (ρ (a, s)) µ (s)

where it is u that matters
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Classical subjective EU: some special cases

Classical subjective EU: some special cases

Singleton M have been pervasive in economics

Since the 70s, economics has emphasized the study of agents’
reactions to “opponents”actions (from the Lucas critique in
macroeconomics to the study of incentives in game theoretic
settings)

Rational expectations literature had to depart from the
“particle” view of agents of the Keynesian macroeconomics of
the 50s and 60s
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Factorization

Factorization

In applications, states often have structural and random
components

s = (ε, θ)

So, here m (ε, θ) is a joint probability
Adopt the factorization m = q × δθ, that is,

m
(
ε, θ′

)
=

 q (ε) if θ′ = θ

0 else

where q (ε) is the probability of ε and δθ is the (degenerate)
probability distribution concentrated on θ

Each model corresponds to
1 a distribution q of the random component ε
2 a model climate system/economy θ
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Factorization

Factorization

In the factorization m = q × δθ, two kinds of model
uncertainties emerge

Theoretical model uncertainty about the economic and
physical theories that underpin the models: different θ
correspond to different theories

Stochastic model uncertainty about the statistical
performance of such theories, due to shocks and to
measurement errors: different q correspond to different
performances
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Factorization

Factorization

Theoretical model uncertainty is the more “fundamental”

To focus on it, assume that the distribution q is known and
common across models

Different models m thus correspond to different structural
components θ

Formally, we can parametrize models via their structural
components:

mθ = q × δθ ∀θ ∈ Θ
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Factorization

Factorization

Physical uncertainty is quantified by q

Epistemic uncertainty is about the structural coeffi cient θ

To address it, the DM has a prior probability µ (θ) that
quantifies DM’s degree of belief that θ is the true parameter
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Factorized classical subjective EU

Classical subjective EU under factorization

Under factorization, the classical subjective expected utility
criterion becomes

V (a) = ∑
θ∈Θ

(
∑
ε∈E

u (ρ (a, ε, θ)) q (ε)

)
µ (θ)

or, equivalently,
V (a) = ∑

θ∈Θ
R (a, θ) µ (θ)

where R (a, θ) = ∑ε∈E u (ρ (a, ε, θ)) q (ε)
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Factorized classical subjective EU: monetary policy example

Factorized classical subjective EU: monetary policy example

Back to the monetary example

u = θ0 + θ1ππ + θ1aa+ εu

π = a+ επ

Distribution q of shock ε is known

Model economy θ is unknown

So, belief µ is directly on θ

The monetary policy problem is then

max
a∈A

V (a) = max
a∈A ∑

θ∈Θ

(
∑
ε∈E

u (ρ (ε, θ)) q (ε)

)
µ (θ)



Uncertainty

Factorized classical subjective EU: climate policy example

Factorized classical subjective EU: climate policy example

Back to the climate policy example{
T = θT a+ εT
D = θ1DT + θ2DT 2 + εD

Distribution q of shocks ε is known

Model climate system and model economy θ is unknown

So, belief µ is directly on θ

The climate policy problem is then

max
a∈A

V (a) = max
a∈A ∑

θ∈Θ

(
∑
ε∈E

u (ρ (a, ε, θ)) q (ε)

)
µ (θ)
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Factorized classical subjective EU: climate policy example

Factorized classical subjective EU: climate policy example

Under risk neutrality and zero actions’cost, we have

R (a, θ) = −θ1D θT a− θ2D θ2T a
2 − θ2D

provided the random components have zero mean and unit
variance

The climate policy problem is then

max
a∈A
−aEµ(θ1D θT )− a2Eµ(θ2D θ2T )−Eµ(θ2D )

with optimal policy

â = −
Eµ(θ1D θT )

Eµ(θ2D θ2T )
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Road map

Road map

Decision problems

toolbox
Savage setup
classical subjective expected utility

Model uncertainty: ambiguity / robustness models
Issues

ambiguity / robustness makes optimal actions more prudent?
ambiguity / robustness favors diversification?
ambiguity / robustness affects valuation?
model uncertainty resolves in the long run through learning?
sources of uncertainty: a Pandora’s box?
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Ambiguity / Robustness: the problem

Ambiguity / Robustness: the problem

Physical and epistemic uncertainties need to be treated
differently

The standard expected utility model does not

Since the 1990s, a strand of economic literature has been
studying ambiguity / Knightian uncertainty / robustness /
deep uncertainty

We consider two approaches

non-Bayesian (Gilboa and Schmeidler 1989; Schmeidler 1989)
Bayesian (Klibanoff, Marinacci, Mukerji 2005)

Both approaches broaden the scope of traditional EU analysis

Normative focus (no behavioral biases or “mistakes”; see
Gilboa and Marinacci 2013)
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Ambiguity / Robustness: the problem

Ambiguity / Robustness: the problem

Intuition: betting on coins is greatly affected by whether or
not coins are well tested
Models correspond to possible biases of the coin
By symmetry (uniform reduction), heads and tails are judged
to be equally likely when betting on an untested coin, never
flipped before
The same probabilistic judgement holds for a well tested coin,
flipped a number of times with an approximately equal
proportion of heads to tails
The evidence behind such judgements, and so the confidence
in them, is dramatically different: ceteris paribus, DMs may
well prefer to bet on tested (phys. unc.) rather than on
untested coins (phys. & epist. unc.)
Experimental evidence: Ellsberg paradox
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Ambiguity / Robustness: relevance

Ambiguity / Robustness: relevance

A more robust rational behavior toward uncertainty emerges

A more accurate / realistic account of how uncertainty affects
valuation (e.g., uncertainty premia in market prices)

Better understanding of exchange mechanics

a dark side of uncertainty: no-trade or small-trade results
because of cumulative effects of physical and epistemic
uncertainty; See the recent financial crisis

Better calibration and quantitative exercises

applications in Finance, Macroeconomics, and Environmental
Economics

Better modelling of decision / policy making

applications in Risk Management; e.g., the otherwise elusive
precautionary principle may fit within this framework
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Ambiguity / Robustness: relevance

Ambiguity / Robustness: relevance

Caveat: risk and model uncertainty can work in the same
direction (magnification effects), as well as in different
directions

Magnification effects: large “uncertainty prices”with
reasonable degrees of risk aversion

Combination of sophisticated formal reasoning and empirical
relevance
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Ambiguity / Robustness: a Bayesian approach

Ambiguity / Robustness: a Bayesian approach

A first distinction: DMs do not have attitudes toward
uncertainty per se, but rather toward physical uncertainty and
toward epistemic uncertainty

Such attitudes may differ: typically DMs are more averse to
epistemic than to physical uncertainty

Berger and Bosetti (2016) provide experimental evidence
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Bayesian approach: a tacit assumption

Bayesian approach: a tacit assumption

Suppose acts are monetary

Classical subjective EU representation can be written as

V (a) = ∑
m∈M

R (a,m) µ (m)

= ∑
m∈M

(
u ◦ u−1

)
(R (a,m)) µ (m)

= ∑
m∈M

u (c (a,m)) µ (m)

where c (a,m) is the certainty equivalent

c (a,m) = u−1 (R (a,m))

of action a under model m
Recall that R (a,m) = ∑s∈S u (ρ (a, s))m (s)
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Bayesian approach: a tacit assumption

Bayesian approach: a tacit assumption

The profile
{c (a,m) : m ∈ supp µ}

is the scope of the model uncertainty that is relevant for the
decision
In particular, DMs use the decision criterion

V (a) = ∑
m∈M

u (c (a,m)) µ (m)

to address model uncertainty, while

R (a,m) = ∑
s∈S

u (ρ (a, s))m (s)

is how DMs address the physical uncertainty that each model
m features
Identical attitudes toward physical and epistemic
uncertainties, both modeled by the same function u
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Bayesian approach: representation

Bayesian approach: representation

The smooth ambiguity model generalizes the representation
by distinguishing such attitudes
Acts are ranked according to the smooth (ambiguity) criterion

V (a) = ∑
m∈M

(
v ◦ u−1

)
(R (a,m)) µ (m)

= ∑
m∈M

v (c (a,m)) µ (m)

The function v : C → R represents attitudes toward model
uncertainty
A negative attitude toward model uncertainty is modelled by a
concave v , interpreted as aversion to (mean preserving)
spreads in certainty equivalents c (a,m)
Ambiguity aversion amounts to a higher degree of aversion
toward epistemic than toward physical uncertainty, i.e., a v
more concave than u
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Bayesian approach: representation

Bayesian approach: representation

Setting φ = v ◦ u−1, the smooth criterion can be written as

V (a) = ∑
m∈M

φ (R (a,m)) µ (m)

This formulation holds for any kind of acts (not just monetary)

Ambiguity aversion corresponds to the concavity of φ

If φ (x) = −e−λx , it is a Bayesian version of the multiplier
preferences of Hansen and Sargent (2001, 2008)

Sources of uncertainty now matter (no longer “uncertainty is
reduced to risk”)
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Bayesian approach: example

Bayesian approach: example

Call I the tested coin and II the untested one

Actions aI and aII are, respectively, bets of one euro on coin I
and on coin II

S = {H,T} × {H,T} = {HH,HT ,TH,TT}
The next table summarizes the decision problem

HH HT TH TT
aI 1 1 0 0
aII 1 0 1 0
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Bayesian approach: example

Bayesian approach: example

Given the available information, it is natural to set

M =

{
m ∈ ∆ (S) : m (HH ∪HT ) = m (TH ∪ TT ) = 1

2

}
M consists of all models that give probability 1/2 to either
outcome for the tested coin; no specific probability is, instead,
assigned to the outcome of the untested coin
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Bayesian approach: example

Bayesian approach: example

Normalize u (1) = 1 and u (0) = 0, so that

V (aI ) = ∑
m∈M

φ (m (HH ∪HT )) dµ (m) = φ

(
1
2

)
and

V (aII ) = ∑
m∈M

φ (m (HH ∪ TH)) dµ (m)

If µ is uniform, V (aII ) =
∫ 1
0 φ (x) dx . If φ is strictly concave,

by the Jensen inequality we then have

V (aII ) =
∫ 1

0
φ (x) dx < φ

(∫ 1

0
xdx
)
= φ

(
1
2

)
= V (aI )
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Bayesian approach: extreme attitudes and maxmin

Under extreme ambiguity aversion (e.g., as λ ↑ ∞ when
φ (x) = −e−λx ), the smooth ambiguity criterion in the limit
reduces to the maxmin criterion

V (a) = min
m∈supp µ

∑
s∈S

u (ρ (a, s))m (s)

Pessimistic criterion: DMs maxminimize over all possible
probability models in the support of µ

The prior µ just selects which models in M are relevant

Waldean version of Gilboa and Schmeidler (1989) seminal
maxmin decision model
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Bayesian approach: extreme attitudes and maxmin

Bayesian approach: extreme attitudes and maxmin

If supp µ = M, the prior is actually irrelevant and we get
back to the Wald (1950) maxmin criterion

V (a) = min
m∈M ∑

s∈S
u (ρ (a, s))m (s)

When M consists of all possible models, it reduces to the
statewise maxmin criterion

V (a) = min
s∈S

u (ρ (a, s))

A very pessimistic (paranoid?) criterion: probabilities, of any
sort, do not play any role (Arrow-Hurwicz decision under
ignorance)

Precautionary principle



Uncertainty

Bayesian approach: extreme attitudes and no trade

Bayesian approach: extreme attitudes and no trade

In a frictionless market a primary asset y that pays y (s) if state s
obtains, is traded

Its market price is p

Investors may trade x units of the asset (buy if x > 0, sell if
x < 0, no trade if x = 0)

State contingent payoff is x (s) = y (s) x − px
Trade occurs only if V (x) ≥ V (0) = 0



Uncertainty

Bayesian approach: extreme attitudes and no trade

Bayesian approach: extreme attitudes and no trade

Dow and Werlang (1992): under maxmin behavior, there is no
trade on asset y whenever

min
m∈supp µ

Em (y) < p < max
m∈supp µ

Em (y) (2)

High ambiguity aversion may freeze markets

Inequality (2) requires supp µ to be nonsingleton: the result
requires ambiguity

More generally: a lower trade volume on asset y corresponds
to a higher ambiguity aversion (e.g., higher λ when
φ (x) = −e−λx ) if (2) holds

Bottom line: it reinforces the idea that uncertainty can be an
impediment to trade
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Bayesian approach: quadratic approximation

Bayesian approach: quadratic approximation

The smooth ambiguity criterion admits a simple quadratic
approximation that leads to a generalization of the classic
mean-variance model (Maccheroni, Marinacci, Ruffi no 2013)

The random variable

ρ (a, ·) : S → C

induced by action a is denoted by a and called (Savage) act
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Bayesian approach: quadratic approximation

Bayesian approach: quadratic approximation

The robust mean-variance rule ranks acts a by

Eµ̄ (a)−
λ

2
σ2µ̄ (a)−

θ

2
σ2µ (E (a))

where λ and θ are positive coeffi cients

Here E(a) : M → R is the random variable

m 7→ Em(a) = ∑
s∈S

a (s)m (s)

that associates the EV of act a under each possible model m
σ2µ (E(a)) is its variance
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Bayesian approach: quadratic approximation

Bayesian approach: quadratic approximation

The robust mean-variance rule

Eµ̄ (a)−
λ

2
σ2µ̄ (a)−

θ

2
σ2µ (E (a))

is determined by the three parameters λ, θ, and µ. When
θ = 0 we return to the usual mean-variance rule

The taste parameters λ and θ model DMs’attitudes toward
physical and epistemic uncertainty, resp.

Higher values of these parameters correspond to stronger
negative attitudes
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Bayesian approach: quadratic approximation

Bayesian approach: quadratic approximation

The information parameter µ determines the variances σ2µ̄ (a)
and σ2µ (E (a)) that measure the physical and epistemic
uncertainty that DMs perceive in the evaluation of act a
Higher values of these variances correspond to a DM’s poorer
information regarding such uncertainties

As usual, the risk premium is

λ

2
σ2µ̄ (a)

Novelty: the ambiguity premium is

θ

2
σ2µ (E(a))
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Ambiguity / Robustness: a non Bayesian approach

Ambiguity / Robustness: a non Bayesian approach

Need to relax the requirement that a single number quantifies
beliefs: the multiple (prior) probabilities model

DMs may not have enough information to quantify their
beliefs through a single probability, but need a set of them

Expected utility is computed with respect to each probability
and DMs act according to the minimum among such expected
utilities
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Non Bayesian approach: representation

Non Bayesian approach: representation

Epistemic uncertainty quantified by a set C of priors

DMs use the criterion

V (a) = min
µ∈C ∑

m∈M

(
∑
s∈S

u (ρ (a, s))m (s)

)
µ(m)

= min
µ∈C ∑

s∈S
u (ρ (a, s)) µ̄(s) (3)

DMs consider the least among all the EU determined by each
prior in C

The predictive form (3) is the original version axiomatized by
Gilboa and Schmeidler (1989)
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Non Bayesian approach: comments

This criterion is less extreme than it may appear at a first
glance

The set C incorporates

the attitude toward ambiguity, a taste component
its perception, an information component

A smaller set C may reflect both better information — i.e., a
lower perception of ambiguity —and / or a less averse
uncertainty attitude

In sum, the size of C does not reflect just information, but
taste as well
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Non Bayesian approach: comments

Non Bayesian approach: comments

With singletons C = {µ} we return to the classical subjective
EU criterion

When C consists of all possible priors on M, we return to the
Wald maxmin criterion

min
m∈M ∑

s∈S
u (ρ (a, s))m (s)

No trade results (kinks)
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Non Bayesian approach: comments

Non Bayesian approach: comments

A more general α-maxmin model has been axiomatized by
Ghirardato, Maccheroni, and Marinacci (2004):

V (a) = αmin
µ∈C ∑

m∈M

(
∑
s∈S

u (ρ (a, s))m (s)

)
µ(m)

+ (1− α)max
µ∈C ∑

m∈M

(
∑
s∈S

u (ρ (a, s))m (s)

)
µ(m)
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Non Bayesian approach: variational model

In the maxmin model, a prior µ is either “in”or “out”of the
set C

Maccheroni, Marinacci, Rustichini (2006): general variational
representation

V (a) = inf
µ∈∆(M )

(
∑
m∈M

(
∑
s∈S

u (ρ (a, s))m (s)

)
µ(m) + c (µ)

)

where c (µ) is a convex function that weights each prior µ

If c is the dichotomic function given by

δC (µ) =

{
0 if µ ∈ C
+∞ else

we get back to the maxmin model with set of priors C
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Non Bayesian approach: multiplier model

If c is given by the relative entropy R (µ||ν), where ν is a
reference prior, we get the multiplier model

V (a) = inf
µ∈∆(M )

(
∑
m∈M

(
∑
s∈S

u (ρ (a, s))m (s)

)
µ(m) + αR (µ||ν)

)

popularized by Hansen and Sargent in their studies on
robustness in Macroeconomics

Also the mean-variance model is variational, with c given by a
Gini index
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Illustration: climate policy example under ambiguity

Recent related works: Athanassoglou and Xepapadeas (2012),
Millner, Dietz, and Heal (2013); Heal and Millner (2014,
2015), Drouet, Bosetti and Tavoni (2015), Berger (2015),
Berger, Emmerling, and Tavoni (2017), Lemoine and Traeger
(2016), Chambers and Melkonyan (2017), Koundouri, Pittis,
Samartzis, Englezos, and Papandreou (2017), Rudik (2017),
Xepapadeas and Yannacopoulos (2017)
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Illustration: climate policy example under ambiguity

Berger and Marinacci (2017), following Drouet, Bosetti and
Tavoni (2015), consider the damage function

D = θ1DT + θ2DT
2 + θ3DT

6 + θ4D (e−θ5DT 2 − 1) + εD

with 3 possible specifications (quadratic, exponential and
sextic)

Consider 11 possible values of the CCR parameter θT

So, there are 33 models to consider

The next figures give the certainty equivalents

c (a, θ) = u−1 (R (a, θ))

of the 33 models, with a power u



Uncertainty

Illustration: climate policy example under ambiguity

Illustration: climate policy example under ambiguity

Quadratic damage:
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Illustration: climate policy example under ambiguity

Sextic damage:
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Illustration: climate policy example under ambiguity

Exponential damage:
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Illustration: climate policy example under ambiguity

Assume a uniform µ, that is, µ (θ) = 1/33
Ambiguity aversion makes optimal policies more prudent

The next figure illustrates
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Illustration: climate policy example under ambiguity
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Sources of uncertainty

We made a distinction between attitudes toward physical and
epistemic uncertainty

A more general issue: do attitudes toward different
uncertainties differ?

Source contingent outcomes: Do DMs regard outcomes (even
monetary) that depend on different sources as different
economic objects?

Ongoing research on this subtle topic
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In decision problems with data, it is important to distinguish
physical and epistemic uncertainty

Traditional EU reduces epistemic uncertainty to physical
uncertainty, and so it ignores the distinction

Experimental and empirical evidence suggest that the
distinction is relevant and may affect valuation

We presented two approaches, one Bayesian and one not

For different applications, different approaches may be most
appropriate

Traditional EU is the benchmark

Yet, adding ambiguity broadens the scope (empirical and
theoretical) and the robustness of results
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